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Abstract− In this paper some important aspects of tensor algebra, tensor product, exterior algebra, symmetric algebra, module of section, graded algebra, vector 
subbundles are studied. The purpose of this paper is to develop the theories which are based on multi-linear algebra and tensors with vector bundles of manifolds. A 
Theorem 1.34. is established by using sections and fibrewise orthogonal sections of an application of Gran-Schmidt. 
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I. INTRODUCTION 

ultilinear algebra and tensor algebra of  𝑅 − modules are 
needed to use higher order tensors. The tangent bundle, 
various tensor bundles, subbundles and associated frame 

bundles will play important roles as the theory of manifolds is 
developed. A theorem related with subbundle is treated with 
various tensors, graded algebras, tensor product, and trivial bundles. 
 
II. TENSOR ALGEBRA 
We build a universal model of multi-linear objects called the tensor 
algebra over 𝑅 in order to study 𝑅 −multilinear maps, , where 
𝑅 will be the ring  𝐶∞(𝑀). 
 
Definition 1.1 [1] An  𝑅 −module 𝑉 is free if there is a subset 𝐵 ⊂
𝑉 such that every nonzero element 𝑣 ∈ 𝑉 can be written uniquely as 
a finite 𝑅 −linear combination of elements of 𝐵. The set 𝐵 will be 
called a (free) basis of  𝑅. 

Example 1.2 Let  𝜋 ∶ 𝐸 → 𝑀 be a trivial 𝑛 − plane bundle. Then 
Γ(𝐸) is a free 𝐶∞(𝑀)−module on a basis of n elements.  
 
 Example 1.3 The integer lattice ℤ𝑘 , a free ℤ −module is a  
𝐶∞(𝑀) module. 
 
Definition 1.4 If 𝑉1,𝑉2,𝑉3 are objects in ℳ(𝑅), a map  𝜑 ∶  𝑉1 ×
𝑉2 → 𝑉3  is 𝑅 − 𝑙𝑖𝑛𝑒𝑎𝑟 if  
 
𝜑(.  ,𝑉2) ∶  𝑉1 → 𝑉3 

𝜑(𝑉1, . ) ∶  𝑉2 → 𝑉3 
 

are  𝑅 − linear,  ∀  𝑣𝑖 ∈ 𝑉𝑖 , 𝑖 = 1,2. 
 
 
 

———————————————— 
1. IUBAT- International University of Business Agriculture and Technology, 

Dhaka-1230, Bangladesh,, PH: 880- 1710226151, e-mail- 
halimdu226@gmail.com  

2. IUBAT- International University of Business Agriculture and Technology, 
Dhaka-1230, Bangladesh,, PH: 880- 1913004750, e-mail- 
shafiq_mju@yahoo.com 

3. IUBAT- International University of Business Agriculture and Technology, 
Dhaka-1230, Bangladesh,, PH: 880- 1724493092, e-mail- 
sajal.saha@iubat.edu 

 

Definition 1.5 [2] A tensor product of   𝑅 −modules  𝑉1,𝑉2 is an 
 𝑅 −module  𝑉1⨂ 𝑉2, together with an 𝑅 −bilinear map 
 
 ⨂ ∶  𝑉1 × 𝑉2 → 𝑉1⨂ 𝑉2 
 
with the following “universal property”:given any 𝑅 −modules 𝑉3 
and any  𝑅 −bilinear map 
 
 𝜑 ∶  𝑉1 × 𝑉2 → 𝑉3, 
 
there is a unique 𝑅 −linear map 𝜑� ∶  𝑉1⨂ 𝑉2 → 𝑉3  such that the 
diagram 
 
                        ⨂ 
    𝑉1 × 𝑉2                      𝑉1⨂ 𝑉2      

                   𝜑              𝜑�                                            

                                      

                                   𝑉3               

commutes. Write  ⨂ (𝑣,𝑤) = 𝑣 ⨂ 𝑤. 
 
Corollary 1.6 If  𝑉𝑖 is an 𝑅 −module, 𝑖 = 1, 2, 3, there are unique 
𝑅 −linear isomorphism 
 
𝑉1 ⨂ (𝑉2 ⨂ 𝑉3) = (𝑉1⨂ 𝑉2) ⨂ 𝑉3 = 𝑉1 ⨂ 𝑉2 ⨂ 𝑉3 
 
identifying 

𝑣1 ⨂ (𝑣2 ⨂ 𝑣3) = (𝑣1⨂ 𝑣2) ⨂ 𝑣3 
 
                          = 𝑣1 ⨂ 𝑣2 ⨂ 𝑣3,    ∀  𝑣𝑖 ∈ 𝑉𝑖 , 𝑖 = 1,2,3. 
 
Definition 1.7 An element 𝑣 ∈  𝑉1⨂…⨂ 𝑉𝑘 is said to be 
decomposable if it can be written as a monomial 𝑣 =
 𝑣1⨂ …⨂ 𝑣𝑘 ,  for suitable elements  𝑣𝑖 ∈ 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑘. Otherwise, 𝑣 
is said to be indecomposable. 

Lemma 1.8 If 𝑉 and 𝑊 are 𝑅 −modules with respective bases 𝐴 and 
𝐵, then 𝑉 ⨂ 𝑊 is free with basis 𝐶 = {𝑎 ⨂ 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. 

Proof. An arbitrary element 𝑣 ∈ 𝐴 ⨂ 𝐵 can be written as a linear 
combination of decom-posable. A decomposable element 𝑉 ⨂ 𝑊  
can be expanded the multilinearity of tensor product, to a linear 
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combination of elements of C, proving that 𝐶 spans  𝑉 ⨂ 𝑊. It 
remains to show that, if 

� 𝑐𝑖𝑗  𝑎𝑖 ⨂ 𝑏𝑗

𝑝,𝑞

𝑖,𝑗=1

= � 𝑑𝑖𝑗  𝑎𝑖 ⨂ 𝑏𝑗

𝑝,𝑞

𝑖,𝑗=1

, 

where 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵, 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞   then all 𝑐𝑖,𝑗 =
𝑑𝑖,𝑗 . Subtracting one expression from the other, we only need to 
prove that 

� 𝑐𝑖𝑗  𝑎𝑖 ⨂ 𝑏𝑗

𝑝,𝑞

𝑖,𝑗=1

= 0       

implies that all  𝑐𝑖,𝑗 = 0. The bilinear functional  𝜑 ∶ 𝑉 × 𝑊 →
𝑅 corresponds one to one to any functions  𝑓 ∶ 𝐴 × 𝐵 → 𝑅.The 
correspondence is  𝜑 ↔ 𝜑 | (𝐴 × 𝐵). Thus, the linear functional 
𝜑� ∶  𝑉 ⨂ 𝑊 → 𝑅 also corresponds one to one to these functions  
𝑓 ∶ 𝐴 × 𝐵 → 𝑅. 
 
    If  (𝑎, 𝑏) ∈ (𝐴 × 𝐵),   let  𝑓𝑎,𝑏 ∶  (𝐴 × 𝐵) → 𝑅  be the function 
taking the value 1on (a,b) and the value 0  on every other element 
of  (𝐴 × 𝐵).The corresponding linear functional will be denoted by  
𝜑�𝑎,𝑏 . Applying  𝜑�𝑎𝑖 ,𝑏𝑗 to equation (1.1), we see that all  𝑐𝑖𝑗 = 0. 
This completes the proof. 
 
Proposition 1.9 If  𝜆𝑖 ∶  𝑉𝑖 → 𝑊𝑖  is an  𝑅 −linear map, 1 ≤ 𝑖 ≤ 𝑘, 
there is a unique 𝑅 −linear map 
 
𝜆1⨂ … … .⨂ 𝜆𝑘 ∶  𝑉1⨂ … … .⨂ 𝑉𝑘 → 𝑊1⨂ … … .⨂ 𝑊𝑘 

 
which, on decomposable elements, has the formula 
 
(𝜆1⨂ … … .⨂ 𝜆𝑘) (𝑣1⨂ … … .⨂ 𝑣𝑘) = 𝜆1(𝑣1)⨂ … … .⨂  𝜆𝑘(𝑣𝑘). 
 
Proof. We know the decomposable span. So, the uniqueness is 
immediate. For existence, let us define the multilinear map 
 
𝜆 ∶  𝑉1 × … … .×  𝑉𝑘 → 𝑊1⨂ … … .⨂ 𝑊𝑘 

by 
 
𝜆(𝑣1, … … . , 𝑣𝑘) = 𝜆1(𝑣1)⨂ … … .⨂  𝜆𝑘(𝑣𝑘). 
 
Then  𝜆1 ⨂ … … .⨂ 𝜆𝑘   is defined to be the unique associated linear 
map. Hence, the proof is complete. 
 
Definition 1.10 For the module of 𝑅 −linear functionals, the 
𝑑𝑢𝑎𝑙  𝑉∗ of an 𝑅 −module 𝑉 is  𝐻𝑜𝑚𝑅(𝑉,𝑅). 
 
Lemma 1.11 If  𝑉 has a finite free basis {𝑣1, … … … , 𝑣𝑛}, then  𝑉∗   
has a finite free basis  {𝑣1, … … … ,𝑣𝑛}, called the basis and defined 
by 
 
  𝑣𝑖∗�𝑣𝑗� = 𝛿𝑗𝑖 ,    1 ≤ 𝑖, 𝑗 ≤ 𝑛. 
 
Corollary 1.12 If  𝑉1, … … . ,𝑉𝑘  are free  𝑅 −modules on bases 
𝐵1, … … . ,𝐵𝑘, respectively, then 𝑉1⨂ … … .⨂ 𝑉𝑘 is a free 
𝑅 −module with basis 
 
𝐵 = {𝑣1⨂ … … .⨂ 𝑣𝑘| 𝑣𝑖 ∈ 𝐵𝑖 ,   1 ≤ 𝑖 ≤ 𝑘}. 

 
Proposition 1.13 There is a unique 𝑅 −linear map 
 
𝑙 ∶  𝑉1∗⨂… … …⨂𝑉𝑘∗ → (𝑉1⨂ … … .⨂ 𝑉𝑘)∗ 

which on decomposable elements has the formula 
 
𝑙(𝜂1⨂ … … .⨂ 𝜂𝑘) (𝑣1⨂ … … .⨂ 𝑣𝑘) = 𝜂1(𝑣1)⨂ … … .⨂  𝜂𝑘(𝑣𝑘). 
 
If the  𝑅 −modules  𝑉𝑖 are all free on finite bases, then  𝑙  is a 
canonical isomorphism.  
 
Proof. Since the decomposable span, uniqueness is immediate. For 
existence, consider the multi linear functional 
 
𝜃 ∶  𝑉1∗ × … … … × 𝑉𝑘∗ × 𝑉1 ×  … … .×  𝑉𝑘 → 𝑅 
 
by 
 
𝜃(𝜂1, … … . , 𝜂𝑘 ,𝑣1  … … , 𝑣𝑘)  =  𝜂1(𝑣1) … … .  𝜂𝑘(𝑣𝑘). 
 
by the universal property, this gives the associated linear functional 
 
𝜃 � : 𝑉1∗⨂… … …⨂ 𝑉𝑘∗ ⨂ 𝑉1⨂ … … .⨂ 𝑉𝑘 → 𝑅, 
 
and we define  

𝑙 ∶  𝑉1∗⨂… … …⨂𝑉𝑘∗ → (𝑉1⨂ … … .⨂ 𝑉𝑘)∗ 
 

by  
 

𝑙(𝜂)(𝑣) = 𝜃 �(𝜂 × 𝑣). 
 

If �𝑣𝑖,1, … … , 𝑣𝑖,𝑚𝑖� is a basis of  𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑘, let  �𝑣𝑖,1∗ , … … , 𝑣𝑖,𝑚𝑖
∗ � be 

the dual basis. Let 𝐵 and 𝐵∗be the respective bases of 
𝑉1⨂ … … .⨂ 𝑉𝑘 and  𝑉1∗⨂… … …⨂ 𝑉𝑘∗ given by the Corollary 1.11. 
The formula  
 

𝑙(𝑣1,𝑗1
∗ ⨂… …⨂ 𝑣𝑘,𝑗𝑘

∗ )(𝑣1,𝑖1⨂… …⨂𝑣𝑘,𝑖𝑘) = 𝛿𝑖1
𝑗1 … …𝛿𝑖𝑘

𝑗𝑘 = 𝛿𝑖1…..….𝑖𝑘
𝑗1……𝑗𝑘  

 
shows that 𝑙 carries the basis 𝐵∗ one to one onto the basis dual to 𝐵, 
so 𝑙  is an isomorphism. This completes the proof. 
 
Definition 1.14 [3] A graded (associated) algebra 𝐴 over 𝑅 is a 
sequence  {𝐴𝑛}𝑛=0∞  of  𝑅 −modules, together with  𝑅 −bilinear maps 
(multiplication) 
 
𝐴𝑛 × 𝐴𝑚 → 𝐴𝑛+𝑚,   ∀ 𝑛,𝑚 ≥ 0, 
 
which is strongly associative in the sense that the compositions 
 

(𝐴𝑛 × 𝐴𝑚) × 𝐴𝑟
.×𝑖𝑑
�⎯� 𝐴𝑛+𝑚 × 𝐴𝑟

.
→𝐴𝑛+𝑚+𝑟 

 

𝐴𝑛 × (𝐴𝑚 × 𝐴𝑟)
𝑖𝑑×.
�⎯� 𝐴𝑛 × 𝐴𝑚+𝑟 .

→𝐴𝑛+𝑚+𝑟 
 
are equal,  ∀ 𝑛,𝑚, 𝑟 ≥ 0. 
 
Definition 1.14 The graded algebra 𝐴 is connected if 𝐴0 = 𝑅 and  
 

𝐴0 × 𝐴𝑚
∙
→𝐴𝑚

∙
← 𝐴𝑚 × 𝐴0 

 

are equal to scalar multiplication, ∀ 𝑚 ≥  0.  
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Definition 1.15 If   𝑉 is an 𝑅 −module, then   𝒯(𝑉) with 
multiplication  ⨂,  is called the tensor algebra of  𝑉. It is clear that 
the tensor algebra  𝒯(𝑉)  is connected. 
   
Definition 1.16 A homomorphism 𝜑 ∶ 𝐴 → 𝐵 of graded 𝑅- algebras 
is a collection of  𝑅- linear maps 𝜑𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 ,∀ 𝑛 ≥ 0 , such that 
the diagrams  

 

commute, ∀ 𝑛, 𝑚 ≥  0. The homomorphism 𝜑 is an isomorphism 
if  𝜑𝑛 is bijective, ∀ 𝑛 ≥ 0. 
 
Theorem 1.17 If   𝜆 ∶ 𝑉 → 𝑊  is an  𝑅 −linear map, then there is a 
unique induced homomorphism  𝒯(𝜆):𝒯(𝑉) → 𝒯(𝑊) of graded 
𝑅 −algebras such that  𝒯0(𝜆) = 𝑖𝑑𝑅   and  𝒯1(𝜆) = 𝜆. This homo- 
orphism satisfies 
 
𝒯𝑛(𝜆)(𝑣1 ⨂ 𝑣2 ⨂… … .⨂ 𝑣𝑛) = 𝜆 (𝑣1) ⨂ 𝜆 (𝑣2) ⨂ … … .⨂ 𝜆(𝑣𝑛), 
 
                                                          ∀ 𝑛 ≥ 2, ∀ 𝑣𝑖 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑛.  
 
Finally, this induced homomorphism makes  𝒯  a covariant function 
from the category of  𝑅 −modules 𝑅 −linear maps to the category 
of graded algebras over  𝑅  and graded algebra homomorphisms. 
 
Definition 1.18 The space of tensors on 𝑉 of type  (𝑟, 𝑠)  is the 
tensor product 
 
𝒯𝑠𝑟(𝑉) = 𝒯0𝑟(𝑉) ⨂  𝒯𝑠0(𝑉). 
 
A tensor 𝛼 𝜖 𝒯𝑠𝑟(𝑉) is said to have covariant degree 𝑟 and 
contravariant degree 𝑠. 
 
III. EXTERIOR ALGEBRA 

Let 𝑅 be any commutative ring with unity 1 such that  1
2

 𝜖 𝑅. That 

is, if 2 = 1 + 1 𝜖 𝑅, then 1
2

 𝜖 𝑅 has the property that 1
2
∙ 2 = 1. In 

the case that 𝑅 = 𝔽 is a field, this means that the characteristic of  𝔽 
is not 2.  
 
Definition 1.19[4] The exterior algebra of 𝑉 is the connected 
graded R-algebra 
 

  Λ(V) = {Λ𝑘(𝑉)}k=0∞  
 

with multiplication 
Λ𝑝(𝑉) × Λ𝑞(𝑉)

Λ
→ Λ𝑝+𝑞(𝑉) 

 
where, the 𝑅 −module  Λ𝑘(𝑉) is the k th exterior power of  𝑉. 
 
Lemma 1.120 Let  𝑉  be an 𝑅 −module,  𝑣 ∈ 𝑉. Then  𝑣 = −𝑣 ⟺
𝑣 = 0. 

Proof. Let  𝑉  be an 𝑅 −module where 𝑣 ∈ 𝑉. Then  

𝑣 = 0 ⇒ 𝑣 = −𝑣. 

For the converse 

𝑣 = −𝑣 ⇒ 2𝑣 = 0 

   ⇒ 𝑣 = 1/2(2𝑣) 

   ⇒ 𝑣 = 1/2(0) 

      ∴ 𝑣 = 0. 

This completes the proof. 
 
Definition 1.21 Let  𝑉 and  𝑊  be  𝑅- modules. An antisymmetric 
𝐾 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑎𝑝  𝜑 ∶  𝑉𝑘 → 𝑊  is a  𝐾 − linear map such that 
 
 𝜑�𝑣𝜎(1), … … … ,𝑣𝜎(𝑘)� = (−1)𝜎 𝜑 (𝑣1,𝑣2, … … , 𝑣𝑘),       
         
                                       ∀ 𝑣1,𝑣2, … … ,𝑣𝑘 ∈ 𝑉,∀ 𝜎 ∈ ∑𝑘 
 

where    (−1)𝜎 = �
 1,     σ an even permutation,
−1, σ an odd permutation.  

 
Lemma 1.22 If  𝜑 ∶  𝑉𝑘 → 𝑊  is antisymmetric, then  𝜑 � �𝔄𝑘(𝑉)� =
{0}.  
 
Proof. It will be enough to show that  𝜑 � vanishes on a set spanning 
𝔄𝑘(𝑉). Thus, if𝑤 ∈ 𝒯𝑝(𝑉) 𝑢 ∈ 𝒯𝑞(𝑉), 𝑝 + 𝑞 = 𝑘 − 2, and 𝑣1,𝑣2 ∈
𝑉, we will show that 
 
𝜑 � (𝑤 ⨂ (𝑣1⨂ 𝑣2 + 𝑣2⨂ 𝑣1) ⨂ 𝑢) = 0. 
 
But the antisymmetry of   𝜑  implies that 
 
𝜑 � (𝑤 ⨂ 𝑣1⨂ 𝑣2⨂  𝑢) = −𝜑 � (𝑤 ⨂ 𝑣2⨂ 𝑣1⨂ 𝑢), 
 
and the assertion follows the linearity. 

Definition 1.23 An element  𝑤 ∈ Λ𝑘(𝑉)  that can be expressed in the 
form 𝑣1 ∧ 𝑣2 ∧… …∧ 𝑣𝑘 ,   where 𝑣𝑖 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑘, is said to be 
decomposable. Otherwise, 𝑤 is indecomposable. 
 
Definition 1.24 A graded algebra 𝐴  is anticommutative if  𝛼 ∈ 𝐴𝑘   
and 𝛽 ∈ 𝐴𝑟 ⇒ 𝛼𝛽 = (−1)𝑘𝑟𝛽𝛼.  
 
Corollary 1.25 [5] The graded algebra  Λ(V)  is anticommutative. 
 
Proof. It is enough to verify the Definition 1.20 for decomposable 
elements of Λ𝑘(𝑉)and  Λ𝑟(𝑉). But that case is an elementary 
consequence of the case  𝑘 = 𝑟 = 1, and this latter case is given by 

   𝑣 ∧ 𝑤 = 𝑣 ⨂ 𝑤 +𝔄2(𝑉) 
 

              = 𝑤 ⨂ 𝑣 +𝔄2(𝑉) 
 
              = −𝑤 ∧ 𝑣, 
 
∀ 𝑣,𝑤 ∈ 𝑉. Thus the graded algebra Λ(V) is anticommutative. 
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Corollary 1.26 If 𝑤 ∈ Λ2𝑟+1(𝑉), then  𝑤 ∧𝑤 = 0. 
 
 Proof. Let  𝑤 ∈ Λ2𝑟+1(𝑉). Then 
 
  𝑤 ∧𝑤 = (−1)(2𝑟+1)(2𝑟+1)(𝑤 ∧𝑤) 
 
             = 𝑤 ∧ 𝑤 

Now, by using Lemma 1.17., we have 

𝑤 ∧𝑤 = 0. 

This completes the proof 

Lemma 1.27 If 𝜆 ∶ 𝑉 → 𝑉 is linear, then  Λ𝑚(𝜆 ) ∶  Λ𝑚(𝑉) →
Λ𝑚(𝑉)  is multiplication by  det(𝜆). 
 
Proof. Relative to a basis  {𝑒1, … … ,𝑒𝑚}  of   𝑉, write 
 

𝜆(𝑒𝑖) = �𝑎𝑖
𝑗𝑒𝑗,    1 ≤ 𝑖 ≤ 𝑚

𝑚

𝑗=1

 

then, 

Λ𝑚(𝜆 )(𝑒1 ∧… …∧ 𝑒𝑚) = 𝜆 (𝑒1) ∧… …∧ 𝜆 (𝑒𝑚) 
                                                                           
                                      = �∑ 𝑎1

𝑗𝑒𝑗𝑚
𝑗=1 � ∧… …∧ �∑ 𝑎𝑚

𝑗 𝑒𝑗𝑚
𝑗=1 � 

 
                                     = ∑ 𝑎1

𝑗1 … … 𝑎𝑚
𝑗𝑚  𝑒𝑗1 ∧… …∧ 𝑒𝑗𝑚 .1≤𝑗1,……,𝑗𝑚≤𝑚  

 
Any term with a repeated j index vanishes. If   𝐽 =
(𝑗1, 𝑗2, … … , 𝑗𝑚) contains no repetitions, there is a unique 
permutation  𝜎 𝑗 ∈ ∑𝑚  such that 

𝑗𝜎𝑗(𝑟) = 𝑟, 1 ≤ 𝑟 ≤ 𝑚.     

Thus, 

Λ𝑚(𝜆 )(𝑒1 ∧… …∧ 𝑒𝑚) 

                           = �∑ (−1)𝜎𝑎𝜎(1)
1 … …𝑎𝜎(𝑚)

𝑚
𝜎∈∑𝑚 �𝑒1 ∧… …∧ 𝑒𝑚 

                           = det(𝜆)(𝑒1 ∧… …∧ 𝑒𝑚). 
 

Hence, the proof is complete. 
 
Lemma 1.28 If 𝑅 is a field, a set of vectors  𝑤1,𝑤2, … … ,𝑤𝑘 ∈
𝑉, 𝑘 ≥ 2, is linearly independent if and only if  𝑤1 ∧ 𝑤2 ∧ … …∧
𝑤𝑘 ≠ 0. 
 
Proof. If 𝑅 is a field then consider the set of 
vectors  𝑤1,𝑤2, … … ,𝑤𝑘 ∈ 𝑉, 𝑘 ≥ 2. Again if the set is dependent, 
the existence of universe in 𝑅 allows us to assume, without loss of 
generality, that 

𝑤1 = �𝑎𝑖𝑤𝑖 .
𝑘

𝑖=2

 

Then 
 

 𝑤1 ∧ 𝑤2 ∧… …∧ 𝑤𝑘 = ∑ 𝑎𝑖𝑤𝑖 ∧ 𝑤2 ∧… …∧ 𝑤𝑘 = 0.𝑘
𝑖=2  

 
Conversely, if the set is linearly independent, extend it to a basis by 
suitable choices of  𝑤𝑘+1, … … ,𝑤𝑚 ∈ 𝑉. Then, we have 

𝑤1 ∧ 𝑤2 ∧ … …∧ 𝑤𝑘 ∧… …∧ 𝑤𝑚 

is a basis of the one-dimensional space  Λ𝑚(𝑉),  hence is not  0. 

This completes the proof. 
Lemma 1.29 If 𝑉 is a free 𝑅 −module on a finite basis, then each  𝐴𝑘   
is one to one, hence  𝐴 ∶  Λ(V) ↪ 𝒯(𝑉) is a canonical graded linear 
imbedding. 
 
Proof. Let  {𝑒1, … … , 𝑒𝑚} ⊂ 𝑉  be a basis and consider the basis 
 
�𝑒𝑖1 ∧ … …∧ 𝑒𝑖𝑘�1≤𝑖1≤⋯…<𝑖𝑘≤𝑖𝑚

 
 
of  Λ𝑘(𝑉). Let {𝑒1∗, … … , 𝑒𝑘∗} ⊂ 𝑉∗ be the dual basis. Since  𝒯𝑘(𝑉∗) =
𝒯𝑘(𝑉)∗, we obtain a subset   
 
�𝑒𝑗1

∗ ⨂… …⨂ 𝑒𝑗𝑘
∗ �

1≤𝑗1<⋯…<𝑗𝑘≤𝑗𝑚
⊂ 𝒯𝑘(𝑉)∗, 

 
which is a part of a free basis. Then, since   𝑗1 < ⋯ < 𝑗𝑘  and   
𝑖1 < ⋯ < 𝑖𝑘 , 

(𝑒𝑗1
∗ ⨂… …⨂ 𝑒𝑗𝑘

∗ )(𝐴𝑘(𝑒𝑖1 ∧… …∧ 𝑒𝑖𝑘))  
 
                   = (𝑒𝑗1

∗ ⨂… …⨂ 𝑒𝑗𝑘
∗ )�∑ (−1)𝜎𝑒𝑖𝜎(1)⨂… … ⨂ 𝑒𝑖𝜎(𝑘)𝜎∈∑𝑘 � 

 
                   = (𝑒𝑗1

∗ ⨂… …⨂ 𝑒𝑗𝑘
∗ )(𝑒𝑖1⨂… …⨂ 𝑒𝑖𝑘) 

 
                   = 𝛿  𝑖1…𝑖𝑘

 𝑗1…𝑗𝑘 

and the assertion follows. 
 
IV. SYMMETRIC ALGEBRA  

A  𝐾 −linear map  𝜑 ∶  𝑉𝑘 → 𝑊  is symmetric if, for each  𝜎 ∈ ∑𝑘, 
 
𝜑 �𝑣𝜎(1), … … , 𝑣𝜎(𝑘)� = 𝜑(𝑣1,𝑣2, … … , 𝑣𝑘), ∀ 𝑣1,𝑣2, … … , 𝑣𝑘 ∈ 𝑉. 

In the usual way, we build a universal, symmetric,  𝐾 −linear map   
 
𝑉𝑘  →̇ 𝔄𝑘(𝑉), 
 
usually written with the dots  
 
 (𝑣1,𝑣2, … … ,𝑣𝑘) ⟼𝑣1𝑣2 … … 𝑣𝑘 . 
 
Definition 1.30 [6] The space  𝔄𝑘(𝑉)  is called the k th symmetric 
power of  𝑉, where, as usual, 𝔄0(𝑉) = 𝑅 and  𝔄1(𝑉) = 𝑉. The 
connected, graded algebra  𝔄(𝑉) = {𝔄𝑘(𝑉)}𝑘=0∞  , with multiplication  
". ",  is called the symmetric algebra of  𝑉. 

Definition 1.31 Let 𝑉 be a finite dimensional vector space over a field  
𝔽. A function  𝑓 ∶  𝑉 → 𝔽  is a homogeneous polynomial of degree  𝑘  
on  𝑉  if, related to some basis  {𝑒1, … … ,𝑒𝑚}  of   𝑉, 
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𝑓 ��𝑥𝑖𝑒𝑖

𝑚

𝑖=1

� = 𝑃(𝑥1, … … , 𝑥𝑚) 

is a homogeneous polynomial of degree  𝑘  in the variables  
𝑥1, … … ,𝑥𝑚. The vector space    of all homogeneous polynomials of 
degree  𝑘  on  𝑉  will be denoted by  𝑃𝑘(𝑉). 
 
V. THE MODULE OF SECTIONS 

We are going to view the set of all vector bundles over a fixed 
manifold  𝑀[5] as the objects of a category  𝑉𝑀.  Let 
𝜋 ∶ 𝐸 → 𝑀 

𝜌 ∶ 𝐹 → 𝑀 

be vector bundles  differing fibers dimensions.  A homomorphism 
of the  𝑛 −plane bundle  𝐸  to the  𝑚−plane bundle 𝐹  is denoted 
by HOM (𝐸,𝐹)  is naturally called  𝐶∞(𝑀)−module. 
 
Theorem 1.32[7] The 𝐶∞(𝑀)−linear map 𝛼 is a canonical 
isomorphism of   𝐶∞(𝑀)−modules. 
 
𝛤(𝐸) ⨂𝐶∞(𝑀)𝛤(𝐹) = 𝛤(𝐸 ⨂ 𝐹). 
 
Corollary 1.30[7] There are canonical iso- morphisms  𝐶∞(𝑀)−
modules 

𝛤�𝒯𝑘(𝐸)� = 𝒯𝑘(𝛤(𝐸)) 

𝛤�𝛬𝑘(𝐸)� = 𝛬𝑘(𝛤(𝐸)) 

𝛤�𝑆𝑘(𝐸)� = 𝑆𝑘�𝛤(𝐸)�. 
 
Proof. The first part of these identities is an immediate consequence 
of theorem 1.29. There is canonical inclusion 

𝐴𝑘 ∶ 𝛬𝑘(𝛤(𝐸)) ↪ 𝒯𝑘(𝛤(𝐸)) 

 𝐴𝑘 ∶ 𝛤�𝛬𝑘(𝐸)� ↪ 𝛤�𝒯𝑘(𝐸)�. 
 
The second part comes from the bundle inclusions. The images of 
these inclusions correspond perfectly under the identification   
𝒯𝑘�𝛤(𝐸)� = 𝛤�𝒯𝑘(𝐸)�, proving the second identity. Similarly the 
third part can be proof which is same as proof of second part.  

Lemma 1.33 If  F and  𝐸  are trivial bundles, then 𝛼 is an 
isomorphism of  𝐶∞(𝑀)−modules. 
 
Proof. In this case we choose the global sections {𝜎1, … … ,𝜎𝑛} of  𝐸 
and  {𝒯1, … … ,𝒯𝑚} of  𝐹 which trivialize these bundles. These are 
free bases of the respective  𝐶∞(𝑀)−modules  𝛤(𝐸)  and  𝛤(𝐹), 
so 
 
�𝜎𝑖⨂𝐶∞(𝑀)𝒯𝑗�𝑖,𝑗=1

𝑛,𝑚  

is a free basis of   𝛤(𝐸) ⨂𝐶∞(𝑀) 𝛤(𝐹). The set 

�𝜎𝑖  ⨂ 𝒯𝑗�𝑖,𝑗=1
𝑛,𝑚  

of point wise tensor products of sections trivializes the bundle  
𝐸⨂𝐹, hence this is also a free basis of   𝛤(𝐸⨂𝐹). Since 

𝛼 �𝜎𝑖⨂𝐶∞(𝑀)𝒯𝑗� = 𝜎𝑖 ⨂ 𝒯𝑗 , 

for all relevant indices, we see that  𝛼  is an isomorphism of   
𝐶∞(𝑀)−modules. This completes the proof. 

Theorem 1.34 If  𝐹 ⊆ 𝐸  is a vector subbundle and if there is given 
Riemannian metric on 𝐸,  then the subset  𝐹� ⊆ 𝐸,  fiber wise 
perpendicular to  𝐹,  is a subbundle. 

Proof. Here the local triviality all that needs to be proven. There are 
sections  𝜎1, … … ,𝜎𝑟 ,𝜎𝑟+1,  … … ,𝜎𝑛  of  𝐸|𝑈, trivializing that bundle, 
where   𝑈  is a neighborhood of an arbitrary point of  𝑀. These can be 
chosen so that  𝜎1, … … ,𝜎𝑟 are sections of   𝐹|𝑈  which trivialize that 
bundle an application of Gran-Schmidt turns these into fiberwise 
orthonormal sections  𝑆1, … … , 𝑆𝑟 ,𝑆𝑟+1  , … … , 𝑆𝑛  with the same 
properties. It follows that  𝑆𝑟+1, … … , 𝑆𝑛 are trivializing sections of 
 𝐹�|𝑈, proving that  𝐹� is a subbundle of  𝐸. Hence the proof is 
complete. 
 
VI. CONCLUSION 

A theorem 1.34 is established which is related with a Riemannian 
metric on the bundle  𝑀 × 𝑉. For each  𝑥 ∈ 𝑀,  let  𝐸�𝑥 ⊂ {𝑥} × 𝑉 be 
the subspace orthogonal to  𝐸𝑥⊥. Consequently the set  𝐸� = ⋃  𝐸�𝑥𝑥∈𝑀   
is a subbundle of   𝑀 × 𝑉. Also this theorem will follow form a 
theorem in dimension theory. 
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