Multilinear Algebras and Tensors with Vector Bundles of Manifolds

Md. Abdul Halim ${ }^{1} \quad$ Md. Shafiqul Islam ${ }^{2} \quad$ Sajal Saha ${ }^{3}$

Abstract

In this paper some important aspects of tensor algebra, tensor product, exterior algebra, symmetric algebra, module of section, graded algebra, vector subbundles are studied. The purpose of this paper is to develop the theories which are based on multi-linear algebra and tensors with vector bundles of manifolds. A Theorem 1.34. is established by using sections and fibrewise orthogonal sections of an application of Gran-Schmidt.

Keywords: Multilinear and tensor algebra, tangent and tensor bundle, subbundles, associated frame bundles, graded and Symmetric algebra.

I. INTRODUCTION

Multilinear algebra and tensor algebra of R - modules are needed to use higher order tensors. The tangent bundle, various tensor bundles, subbundles and associated frame bundles will play important roles as the theory of manifolds is developed. A theorem related with subbundle is treated with various tensors, graded algebras, tensor product, and trivial bundles.

II. TENSOR ALGEBRA

We build a universal model of multi-linear objects called the tensor algebra over R in order to study R-multilinear maps, , where R will be the ring $C^{\infty}(M)$.

Definition 1.1 [1] An R-module V is free if there is a subset $B \subset$ V such that every nonzero element $v \in V$ can be written uniquely as a finite R-linear combination of elements of B. The set B will be called a (free) basis of R.

Example 1.2 Let $\pi: E \rightarrow M$ be a trivial n - plane bundle. Then $\Gamma(E)$ is a free $C^{\infty}(M)$-module on a basis of n elements.

Example 1.3 The integer lattice \mathbb{Z}^{k}, a free \mathbb{Z}-module is a $C^{\infty}(M)$ module.

Definition 1.4 If V_{1}, V_{2}, V_{3} are objects in $\mathcal{M}(R)$, a map $\varphi: V_{1} \times$ $V_{2} \rightarrow V_{3}$ is R - linear if
$\varphi\left(., V_{2}\right): V_{1} \rightarrow V_{3}$
$\varphi\left(V_{1},.\right): V_{2} \rightarrow V_{3}$
are R - linear, $\forall v_{i} \in V_{i}, i=1,2$.

1. IUBAT- International University of Business Agriculture and Technology, Dhaka-1230, Bangladesh,, PH: 880-1710226151, e-mailhalimdu226@gmail.com
2. IUBAT- International University of Business Agriculture and Technology, Dhaka-1230, Bangladesh,, PH: 880-1913004750, e-mailshafiq_mju@yahoo.com
3. IUBAT- International University of Business Agriculture and Technology, Dhaka-1230, Bangladesh,, PH: 880-1724493092, e-mailsajal.saha@iubat.edu

Definition 1.5 [2] A tensor product of R-modules V_{1}, V_{2} is an R-module $V_{1} \otimes V_{2}$, together with an R-bilinear map

$$
\otimes: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}
$$

with the following "universal property":given any R-modules V_{3} and any R-bilinear map

$$
\varphi: V_{1} \times V_{2} \rightarrow V_{3}
$$

there is a unique R-linear map $\tilde{\varphi}: V_{1} \otimes V_{2} \rightarrow V_{3}$ such that the diagram

commutes. Write $\otimes(v, w)=v \otimes w$.
Corollary 1.6 If V_{i} is an R-module, $i=1,2,3$, there are unique R-linear isomorphism
$V_{1} \otimes\left(V_{2} \otimes V_{3}\right)=\left(V_{1} \otimes V_{2}\right) \otimes V_{3}=V_{1} \otimes V_{2} \otimes V_{3}$
identifying

$$
\begin{aligned}
v_{1} \otimes\left(v_{2} \otimes v_{3}\right) & =\left(v_{1} \otimes v_{2}\right) \otimes v_{3} \\
& =v_{1} \otimes v_{2} \otimes v_{3}, \quad \forall v_{i} \in V_{i}, i=1,2,3
\end{aligned}
$$

Definition 1.7 An element $v \in V_{1} \otimes \ldots \otimes V_{k}$ is said to be decomposable if it can be written as a monomial $v=$ $v_{1} \otimes \ldots \otimes v_{k}$, for suitable elements $v_{i} \in V_{i}, 1 \leq i \leq k$. Otherwise, v is said to be indecomposable.

Lemma 1.8 If V and W are R-modules with respective bases A and B, then $V \otimes W$ is free with basis $C=\{a \otimes b \mid a \in A, b \in B\}$.

Proof. An arbitrary element $v \in A \otimes B$ can be written as a linear combination of decom-posable. A decomposable element $V \otimes W$ can be expanded the multilinearity of tensor product, to a linear
combination of elements of C, proving that C spans $V \otimes W$. It remains to show that, if
$\sum_{i, j=1}^{p, q} c_{i j} a_{i} \otimes b_{j}=\sum_{i, j=1}^{p, q} d_{i j} a_{i} \otimes b_{j}$,
where $a_{i} \in A$ and $b_{j} \in B, 1 \leq i \leq p, 1 \leq j \leq q$ then all $c_{i, j}=$ $d_{i, j}$. Subtracting one expression from the other, we only need to prove that
$\sum_{i, j=1}^{p, q} c_{i j} a_{i} \otimes b_{j}=0$
implies that all $c_{i, j}=0$. The bilinear functional $\varphi: V \times W \rightarrow$ R corresponds one to one to any functions $f: A \times B \rightarrow R$. The correspondence is $\varphi \leftrightarrow \varphi \mid(A \times B)$. Thus, the linear functional $\tilde{\varphi}: V \otimes W \rightarrow R$ also corresponds one to one to these functions $f: A \times B \rightarrow R$.

If $(a, b) \in(A \times B)$, let $f_{a, b}:(A \times B) \rightarrow R \quad$ be the function taking the value 1 on (a,b) and the value 0 on every other element of $(A \times B)$. The corresponding linear functional will be denoted by $\tilde{\varphi}_{a, b}$. Applying $\tilde{\varphi}_{a_{i}, b_{j}}$ to equation (1.1), we see that all $c_{i j}=0$. This completes the proof.

Proposition 1.9 If $\lambda_{i}: V_{i} \rightarrow W_{i}$ is an R-linear map, $1 \leq i \leq k$, there is a unique R-linear map
$\lambda_{1} \otimes \ldots \ldots \otimes \lambda_{k}: V_{1} \otimes \ldots \ldots \otimes V_{k} \rightarrow W_{1} \otimes \ldots \ldots \otimes W_{k}$
which, on decomposable elements, has the formula
$\left(\lambda_{1} \otimes \ldots \ldots \otimes \lambda_{k}\right)\left(v_{1} \otimes \ldots \ldots \otimes v_{k}\right)=\lambda_{1}\left(v_{1}\right) \otimes \ldots \ldots \otimes \lambda_{k}\left(v_{k}\right)$.
Proof. We know the decomposable span. So, the uniqueness is immediate. For existence, let us define the multilinear map
$\lambda: V_{1} \times \ldots \ldots . \times V_{k} \rightarrow W_{1} \otimes \ldots \ldots \otimes W_{k}$
by
$\lambda\left(v_{1}, \ldots \ldots, v_{k}\right)=\lambda_{1}\left(v_{1}\right) \otimes \ldots \ldots \otimes \lambda_{k}\left(v_{k}\right)$.
Then $\lambda_{1} \otimes \ldots \ldots \otimes \lambda_{k}$ is defined to be the unique associated linear map. Hence, the proof is complete.

Definition 1.10 For the module of R-linear functionals, the dual V^{*} of an R-module V is $\operatorname{Hom}_{R}(V, R)$.

Lemma 1.11 If V has a finite free basis $\left\{v_{1}, \ldots \ldots \ldots, v_{n}\right\}$, then V^{*} has a finite free basis $\left\{v_{1}, \ldots \ldots \ldots, v_{n}\right\}$, called the basis and defined by
$v_{i}^{*}\left(v_{j}\right)=\delta_{j}^{i}, \quad 1 \leq i, j \leq n$.
Corollary 1.12 If $V_{1}, \ldots \ldots, V_{k}$ are free R-modules on bases $B_{1}, \ldots \ldots, B_{k}$, respectively, then $V_{1} \otimes \ldots \ldots \otimes V_{k}$ is a free R-module with basis
$B=\left\{v_{1} \otimes \ldots \ldots . \otimes v_{k} \mid v_{i} \in B_{i}, \quad 1 \leq i \leq k\right\}$.

Proposition 1.13 There is a unique R-linear map
$l: V_{1}^{*} \otimes \ldots \ldots \ldots \otimes V_{k}^{*} \rightarrow\left(V_{1} \otimes \ldots \ldots \otimes V_{k}\right)^{*}$
which on decomposable elements has the formula
$l\left(\eta_{1} \otimes \ldots \ldots \otimes \eta_{k}\right)\left(v_{1} \otimes \ldots \ldots \otimes v_{k}\right)=\eta_{1}\left(v_{1}\right) \otimes \ldots \ldots \otimes \eta_{k}\left(v_{k}\right)$.
If the R-modules V_{i} are all free on finite bases, then l is a canonical isomorphism.

Proof. Since the decomposable span, uniqueness is immediate. For existence, consider the multi linear functional
$\theta: V_{1}^{*} \times \ldots \ldots \ldots \times V_{k}^{*} \times V_{1} \times \ldots \ldots \times V_{k} \rightarrow R$
by
$\theta\left(\eta_{1}, \ldots \ldots, \eta_{k}, v_{1} \ldots \ldots, v_{k}\right)=\eta_{1}\left(v_{1}\right) \ldots \ldots . \eta_{k}\left(v_{k}\right)$.
by the universal property, this gives the associated linear functional
$\widetilde{\theta}: V_{1}^{*} \otimes \ldots \ldots \otimes V_{k}^{*} \otimes V_{1} \otimes \ldots \ldots \otimes V_{k} \rightarrow R$,
and we define
$l: V_{1}^{*} \otimes \ldots \ldots \ldots \otimes V_{k}^{*} \rightarrow\left(V_{1} \otimes \ldots \ldots . \otimes V_{k}\right)^{*}$
by
$l(\eta)(v)=\widetilde{\theta}(\eta \times v)$.
If $\left\{v_{i, 1}, \ldots \ldots, v_{i, m_{i}}\right\}$ is a basis of $V_{i}, 1 \leq i \leq k$, let $\left\{v_{i, 1}^{*}, \ldots \ldots, v_{i, m_{i}}^{*}\right\}$ be the dual basis. Let B and B^{*} be the respective bases of $V_{1} \otimes \ldots \ldots \otimes V_{k}$ and $V_{1}^{*} \otimes \ldots \ldots \ldots V_{k}^{*}$ given by the Corollary 1.11. The formula
$l\left(v_{1, j_{1}}^{*} \otimes \ldots \ldots \otimes v_{k, j k}^{*}\right)\left(v_{1, i_{1}} \otimes \ldots \ldots \otimes v_{k, i_{k}}\right)=\delta_{i_{1}}^{j_{1}} \ldots \ldots \delta_{i_{k}}^{j_{k}}=\delta_{i_{1} \ldots \ldots \ldots i_{k}}^{j_{1} \ldots \ldots j_{k}}$
shows that l carries the basis B^{*} one to one onto the basis dual to B, so l is an isomorphism. This completes the proof.

Definition 1.14 [3] A graded (associated) algebra A over R is a sequence $\left\{A^{n}\right\}_{n=0}^{\infty}$ of R-modules, together with R-bilinear maps (multiplication)
$A^{n} \times A^{m} \rightarrow A^{n+m}, \quad \forall n, m \geq 0$,
which is strongly associative in the sense that the compositions
$\left(A^{n} \times A^{m}\right) \times A^{r} \xrightarrow{\cdot \times i d} A^{n+m} \times A^{r} \stackrel{\dot{\rightarrow}}{ } A^{n+m+r}$
$A^{n} \times\left(A^{m} \times A^{r}\right) \xrightarrow{i d \times .} A^{n} \times A^{m+r} \xrightarrow{\dot{\rightarrow}} A^{n+m+r}$
are equal, $\forall n, m, r \geq 0$.
Definition 1.14 The graded algebra A is connected if $A^{0}=R$ and
$A^{0} \times A^{m} \stackrel{\rightharpoonup}{\rightarrow} A^{m} \leftarrow A^{m} \times A^{0}$
are equal to scalar multiplication, $\forall m \geq 0$.

Definition 1.15 If V is an R-module, then $\mathcal{T}(V)$ with multiplication \otimes, is called the tensor algebra of V. It is clear that the tensor algebra $\mathcal{T}(V)$ is connected.

Definition 1.16 A homomorphism $\varphi: A \rightarrow B$ of graded R - algebras is a collection of R - linear maps $\varphi^{n}: A^{n} \rightarrow B^{n}, \forall n \geq 0$, such that the diagrams

commute, $\forall n, m \geq 0$. The homomorphism φ is an isomorphism if φ^{n} is bijective, $\forall n \geq 0$.

Theorem 1.17 If $\lambda: V \rightarrow W$ is an R-linear map, then there is a unique induced homomorphism $\mathcal{T}(\lambda): \mathcal{T}(V) \rightarrow \mathcal{T}(W)$ of graded R-algebras such that $\mathcal{T}^{0}(\lambda)=i d_{R}$ and $\mathcal{T}^{1}(\lambda)=\lambda$. This homoorphism satisfies

$$
\mathcal{T}^{n}(\lambda)\left(v_{1} \otimes v_{2} \otimes \ldots \ldots \otimes v_{n}\right)=\lambda\left(v_{1}\right) \otimes \lambda\left(v_{2}\right) \otimes \ldots \ldots \otimes \lambda\left(v_{n}\right)
$$

$$
\forall n \geq 2, \forall v_{i} \in V, 1 \leq i \leq n
$$

Finally, this induced homomorphism makes \mathcal{T} a covariant function from the category of R-modules R-linear maps to the category of graded algebras over R and graded algebra homomorphisms.

Definition 1.18 The space of tensors on V of type (r, s) is the tensor product
$\mathcal{T}_{s}^{r}(V)=\mathcal{T}_{0}^{r}(V) \otimes \mathcal{T}_{S}^{0}(V)$.
A tensor $\alpha \in \mathcal{T}_{s}^{r}(V)$ is said to have covariant degree r and contravariant degree s.

III. EXTERIOR ALGEBRA

Let R be any commutative ring with unity 1 such that $\frac{1}{2} \epsilon R$. That is, if $2=1+1 \epsilon R$, then $\frac{1}{2} \epsilon R$ has the property that $\frac{1}{2} \cdot 2=1$. In the case that $R=\mathbb{F}$ is a field, this means that the characteristic of \mathbb{F} is not 2 .

Definition 1.19[4] The exterior algebra of V is the connected graded R-algebra

$$
\Lambda(\mathrm{V})=\left\{\Lambda^{k}(V)\right\}_{\mathrm{k}=0}^{\infty}
$$

with multiplication
$\Lambda^{p}(V) \times \Lambda^{q}(V) \xrightarrow{\Lambda} \Lambda^{p+q}(V)$
where, the R-module $\Lambda^{k}(V)$ is the k th exterior power of V.
Lemma 1.120 Let V be an R-module, $v \in V$. Then $v=-v \Leftrightarrow$ $v=0$.

Proof. Let V be an R-module where $v \in V$. Then
$v=0 \Rightarrow v=-v$.
For the converse

$$
\begin{gathered}
v=-v \Rightarrow 2 v=0 \\
\Rightarrow v=1 / 2(2 v) \\
\Rightarrow v=1 / 2(0) \\
\therefore v=0 .
\end{gathered}
$$

This completes the proof.
Definition 1.21 Let V and W be R-modules. An antisymmetric K - linear map $\varphi: V^{k} \rightarrow W$ is a K - linear map such that

$$
\begin{aligned}
\varphi\left(v_{\sigma(1)}, \ldots \ldots \ldots, v_{\sigma(k)}\right) & =(-1)^{\sigma} \varphi\left(v_{1}, v_{2}, \ldots \ldots, v_{k}\right), \\
& \forall v_{1}, v_{2}, \ldots \ldots, v_{k} \in V, \forall \sigma \in \sum k
\end{aligned}
$$

where $(-1)^{\sigma}= \begin{cases}1, & \sigma \text { an even permutation, } \\ -1, & \sigma \text { an odd permutation. }\end{cases}$
Lemma 1.22 If $\varphi: V^{k} \rightarrow W$ is antisymmetric, then $\widetilde{\varphi}\left(\mathfrak{A}^{k}(V)\right)=$ $\{0\}$.

Proof. It will be enough to show that $\widetilde{\varphi}$ vanishes on a set spanning $\mathfrak{H}^{k}(V)$. Thus, if $w \in \mathcal{T}^{p}(V) u \in \mathcal{T}^{q}(V), p+q=k-2$, and $v_{1}, v_{2} \in$ V, we will show that
$\widetilde{\varphi}\left(w \otimes\left(v_{1} \otimes v_{2}+v_{2} \otimes v_{1}\right) \otimes u\right)=0$.
But the antisymmetry of φ implies that
$\widetilde{\varphi}\left(w \otimes v_{1} \otimes v_{2} \otimes u\right)=-\widetilde{\varphi}\left(w \otimes v_{2} \otimes v_{1} \otimes u\right)$,
and the assertion follows the linearity.
Definition 1.23 An element $w \in \Lambda^{k}(V)$ that can be expressed in the form $v_{1} \wedge v_{2} \wedge \ldots \ldots \wedge v_{k}$, where $v_{i} \in V, 1 \leq i \leq k$, is said to be decomposable. Otherwise, w is indecomposable.

Definition 1.24 A graded algebra A is anticommutative if $\alpha \in A^{k}$ and $\beta \in A^{r} \Rightarrow \alpha \beta=(-1)^{k r} \beta \alpha$.

Corollary 1.25 [5] The graded algebra $\Lambda(\mathrm{V})$ is anticommutative.
Proof. It is enough to verify the Definition 1.20 for decomposable elements of $\Lambda^{k}(V)$ and $\Lambda^{r}(V)$. But that case is an elementary consequence of the case $k=r=1$, and this latter case is given by

$$
\begin{aligned}
v \wedge w= & v \otimes w+\mathfrak{A}^{2}(V) \\
& =w \otimes v+\mathfrak{A}^{2}(V) \\
& =-w \wedge v
\end{aligned}
$$

$\forall v, w \in V$. Thus the graded algebra $\Lambda(\mathrm{V})$ is anticommutative.

ISSN 2229-5518
Corollary 1.26 If $w \in \Lambda^{2 r+1}(V)$, then $w \wedge w=0$.
Proof. Let $w \in \Lambda^{2 r+1}(V)$. Then

$$
\begin{aligned}
w \wedge w & =(-1)^{(2 r+1)(2 r+1)}(w \wedge w) \\
& =w \wedge w
\end{aligned}
$$

Now, by using Lemma 1.17., we have
$w \wedge w=0$.
This completes the proof
Lemma 1.27 If $\lambda: V \rightarrow V$ is linear, then $\Lambda^{m}(\lambda): \Lambda^{m}(V) \rightarrow$ $\Lambda^{m}(V)$ is multiplication by $\operatorname{det}(\lambda)$.

Proof. Relative to a basis $\left\{e_{1}, \ldots \ldots, e_{m}\right\}$ of V, write
$\lambda\left(e_{i}\right)=\sum_{j=1}^{m} a_{i}^{j} e_{j}, \quad 1 \leq i \leq m$
then,

$$
\begin{aligned}
\Lambda^{m}(\lambda)\left(e_{1} \wedge \ldots \ldots \wedge e_{m}\right) & =\lambda\left(e_{1}\right) \wedge \ldots \ldots \wedge \lambda\left(e_{m}\right) \\
& =\left(\sum_{j=1}^{m} a_{1}^{j} e_{j}\right) \wedge \ldots \ldots \wedge\left(\sum_{j=1}^{m} a_{m}^{j} e_{j}\right) \\
& =\sum_{1 \leq j_{1}, \ldots \ldots, j_{m \leq m}} a_{1}^{j_{1}} \ldots \ldots a_{m}^{j_{m}} e_{j_{1}} \wedge \ldots \ldots \wedge e_{j_{m}}
\end{aligned}
$$

Any term with a repeated j index vanishes. If $J=$ $\left(j_{1}, j_{2}, \ldots \ldots, j_{m}\right)$ contains no repetitions, there is a unique permutation $\sigma j \in \sum m$ such that
$j_{\sigma j}(r)=r, 1 \leq r \leq m$.
Thus,

$$
\begin{aligned}
\Lambda^{m}(\lambda)\left(e_{1} \wedge \ldots \ldots\right. & \left.\wedge e_{m}\right) \\
& =\left(\sum_{\sigma \in \sum m}(-1)^{\sigma} a_{\sigma_{(1)}}^{1} \ldots \ldots a_{\sigma(m)}^{m}\right) e_{1} \wedge \ldots \ldots \wedge e_{m} \\
& =\operatorname{det}(\lambda)\left(e_{1} \wedge \ldots \ldots \wedge e_{m}\right) .
\end{aligned}
$$

Hence, the proof is complete.
Lemma 1.28 If R is a field, a set of vectors $w_{1}, w_{2}, \ldots \ldots, w_{k} \in$ $V, k \geq 2$, is linearly independent if and only if $w_{1} \wedge w_{2} \wedge \ldots \ldots \wedge$ $w_{k} \neq 0$.

Proof. If R is a field then consider the set of vectors $w_{1}, w_{2}, \ldots \ldots, w_{k} \in V, k \geq 2$. Again if the set is dependent, the existence of universe in R allows us to assume, without loss of generality, that
$w_{1}=\sum_{i=2}^{k} a_{i} w_{i}$.
Then
$w_{1} \wedge w_{2} \wedge \ldots \ldots \wedge w_{k}=\sum_{i=2}^{k} a_{i} w_{i} \wedge w_{2} \wedge \ldots \ldots \wedge w_{k}=0$.
Conversely, if the set is linearly independent, extend it to a basis by suitable choices of $w_{k+1}, \ldots \ldots, w_{m} \in V$. Then, we have
$w_{1} \wedge w_{2} \wedge \ldots \ldots \wedge w_{k} \wedge \ldots \ldots \wedge w_{m}$
is a basis of the one-dimensional space $\Lambda^{m}(V)$, hence is not 0 .
This completes the proof.
Lemma 1.29 If V is a free R-module on a finite basis, then each A^{k} is one to one, hence $A: \Lambda(\mathrm{V}) \hookrightarrow \mathcal{T}(V)$ is a canonical graded linear imbedding.

Proof. Let $\left\{e_{1}, \ldots \ldots, e_{m}\right\} \subset V$ be a basis and consider the basis
$\left\{e_{i_{1}} \wedge \ldots \ldots \wedge e_{i_{k}}\right\}_{1 \leq i_{1} \leq \cdots \ldots<i_{k} \leq i_{m}}$
of $\Lambda^{k}(V)$. Let $\left\{e_{1}^{*}, \ldots \ldots, e_{k}^{*}\right\} \subset V^{*}$ be the dual basis. Since $\mathcal{T}^{k}\left(V^{*}\right)=$ $\mathcal{T}^{k}(V)^{*}$, we obtain a subset

$$
\left\{e_{j_{1}}^{*} \otimes \ldots \ldots \otimes e_{j_{k}}^{*}\right\}_{1 \leq j_{1}<\cdots \ldots<j_{k} \leq j_{m}} \subset \mathcal{T}^{k}(V)^{*}
$$

which is a part of a free basis. Then, since $j_{1}<\cdots<j_{k}$ and $i_{1}<\cdots<i_{k}$,

$$
\begin{aligned}
\left(e_{j_{1}}^{*} \otimes \ldots \ldots\right. & \left.\otimes e_{j_{k}}^{*}\right)\left(A^{k}\left(e_{i_{1}} \wedge \ldots \ldots \wedge e_{i_{k}}\right)\right) \\
& =\left(e_{j_{1}}^{*} \otimes \ldots \ldots \otimes e_{j_{k}}^{*}\right)\left(\sum_{\sigma \in \sum k}(-1)^{\sigma} e_{i_{\sigma(1)}} \otimes \ldots \ldots \otimes e_{i_{\sigma(k)}}\right) \\
& =\left(e_{j_{1}}^{*} \otimes \ldots \ldots \otimes e_{j_{k}}^{*}\right)\left(e_{i_{1}} \otimes \ldots \ldots \otimes e_{i_{k}}\right) \\
& =\delta_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{k}}
\end{aligned}
$$

and the assertion follows.

IV. SYMMETRIC ALGEBRA

A K-linear map $\varphi: V^{k} \rightarrow W$ is symmetric if, for each $\sigma \in \sum k$,
$\varphi\left(v_{\sigma(1)}, \ldots \ldots, v_{\sigma(k)}\right)=\varphi\left(v_{1}, v_{2}, \ldots \ldots, v_{k}\right), \forall v_{1}, v_{2}, \ldots \ldots, v_{k} \in V$.
In the usual way, we build a universal, symmetric, K-linear map
$V^{k} \dot{\rightarrow} \mathfrak{A}^{k}(V)$,
usually written with the dots
$\left(v_{1}, v_{2}, \ldots \ldots, v_{k}\right) \mapsto v_{1} v_{2} \ldots \ldots v_{k}$.
Definition 1.30 [6] The space $\mathfrak{A}^{k}(V)$ is called the k th symmetric power of V, where, as usual, $\mathfrak{A}^{0}(V)=R$ and $\mathfrak{H}^{1}(V)=V$. The connected, graded algebra $\mathfrak{A}(V)=\left\{\mathfrak{A}^{k}(V)\right\}_{k=0}^{\infty}$, with multiplication ". ", is called the symmetric algebra of V.

Definition 1.31 Let V be a finite dimensional vector space over a field \mathbb{F}. A function $f: V \rightarrow \mathbb{F}$ is a homogeneous polynomial of degree k on V if, related to some basis $\left\{e_{1}, \ldots \ldots, e_{m}\right\}$ of V,

$$
f\left(\sum_{i=1}^{m} x_{i} e_{i}\right)=P\left(x_{1}, \ldots \ldots, x_{m}\right)
$$

is a homogeneous polynomial of degree k in the variables $x_{1}, \ldots \ldots, x_{m}$. The vector space of all homogeneous polynomials of degree k on V will be denoted by $P^{k}(V)$.

V. THE MODULE OF SECTIONS

We are going to view the set of all vector bundles over a fixed manifold $M[5]$ as the objects of a category V_{M}. Let
$\pi: E \rightarrow M$
$\rho: F \rightarrow M$
be vector bundles differing fibers dimensions. A homomorphism of the n-plane bundle E to the m-plane bundle F is denoted by $\operatorname{HOM}(E, F)$ is naturally called $C^{\infty}(M)$ - module.

Theorem 1.32[7] The $C^{\infty}(M)$-linear map α is a canonical isomorphism of $C^{\infty}(M)$ - modules.
$\Gamma(E) \otimes_{C^{\infty}(M)} \Gamma(F)=\Gamma(E \otimes F)$.
Corollary $1.30[7]$ There are canonical iso- morphisms $C^{\infty}(M)-$ modules
$\Gamma\left(\mathcal{T}^{k}(E)\right)=\mathcal{T}^{k}(\Gamma(E))$
$\Gamma\left(\Lambda^{k}(E)\right)=\Lambda^{k}(\Gamma(E))$
$\Gamma\left(S^{k}(E)\right)=S^{k}(\Gamma(E))$.
Proof. The first part of these identities is an immediate consequence of theorem 1.29. There is canonical inclusion
$A^{k}: \Lambda^{k}(\Gamma(E)) \hookrightarrow \mathcal{T}^{k}(\Gamma(E))$
$A^{k}: \Gamma\left(\Lambda^{k}(E)\right) \hookrightarrow \Gamma\left(\mathcal{T}^{k}(E)\right)$.
The second part comes from the bundle inclusions. The images of these inclusions correspond perfectly under the identification $\mathcal{T}^{k}(\Gamma(E))=\Gamma\left(\mathcal{T}^{k}(E)\right)$, proving the second identity. Similarly the third part can be proof which is same as proof of second part.

Lemma 1.33 If F and E are trivial bundles, then α is an isomorphism of $C^{\infty}(M)$ - modules.

Proof. In this case we choose the global sections $\left\{\sigma_{1}, \ldots \ldots, \sigma_{n}\right\}$ of E and $\left\{\mathcal{J}_{1}, \ldots \ldots, \mathcal{J}_{m}\right\}$ of F which trivialize these bundles. These are free bases of the respective $C^{\infty}(M)$ - modules $\Gamma(E)$ and $\Gamma(F)$, so
$\left\{\sigma_{i} \otimes_{C^{\infty}(M)} \mathcal{T}_{j}\right\}_{i, j=1}^{n, m}$
is a free basis of $\Gamma(E) \otimes_{C^{\infty}(M)} \Gamma(F)$. The set

$$
\left\{\sigma_{i} \otimes \mathcal{T}_{j}\right\}_{i, j=1}^{n, m}
$$

of point wise tensor products of sections trivializes the bundle $E \otimes F$, hence this is also a free basis of $\Gamma(E \otimes F)$. Since
$\alpha\left(\sigma_{i} \otimes_{C^{\infty}(M)} \mathcal{T}_{j}\right)=\sigma_{i} \otimes \mathcal{T}_{j}$,
for all relevant indices, we see that α is an isomorphism of $C^{\infty}(M)$ - modules. This completes the proof.

Theorem 1.34 If $F \subseteq E$ is a vector subbundle and if there is given Riemannian metric on E, then the subset $\tilde{F} \subseteq E$, fiber wise perpendicular to F, is a subbundle.

Proof. Here the local triviality all that needs to be proven. There are sections $\sigma_{1}, \ldots \ldots, \sigma_{r}, \sigma_{r+1}, \ldots \ldots, \sigma_{n}$ of $E \mid U$, trivializing that bundle, where U is a neighborhood of an arbitrary point of M. These can be chosen so that $\sigma_{1}, \ldots \ldots, \sigma_{r}$ are sections of $F \mid U$ which trivialize that bundle an application of Gran-Schmidt turns these into fiberwise orthonormal sections $S_{1}, \ldots, ., S_{r}, S_{r+1}, \ldots \ldots, S_{n}$ with the same properties. It follows that $S_{r+1}, \ldots \ldots, S_{n}$ are trivializing sections of $\tilde{F} \mid U$, proving that \widetilde{F} is a subbundle of E. Hence the proof is complete.

VI. CONCLUSION

A theorem 1.34 is established which is related with a Riemannian metric on the bundle $M \times V$. For each $x \in M$, let $\tilde{E}_{x} \subset\{x\} \times V$ be the subspace orthogonal to E_{x}^{\perp}. Consequently the set $\tilde{E}=\cup_{x \in M} \tilde{E}_{x}$ is a subbundle of $M \times V$. Also this theorem will follow form a theorem in dimension theory.

REFERENCES

1. Boothby, W. 1975. An Introduction to Differentiable Manifolds and Differential Geometry, Academic Press, NewYork..
2. Donson, C.T.J. and Poston, T. 1997.Tensor Geometry, Pitman, London
3. Ahmed, K. M., 2007. A study of Graded manifolds, Dhaka Uni. J. Sci. 55 (1): 35-39
4. Chevally, C. 1956. Fundamental Concepts of Algebra, Academic Press, New York.
5. Brickell, F. and Clark, R.S.1970.Differential Manifolds, Van Nostrand Reinhold company, London
6. Myers, S.B. and N.E. 1939.Steenrod, the group of isometrics of a Riemannian Manifold, Ann of Math. 40: 400-416.
7. Auslander, L. and R.E. Mackenzie, 1963. Introduction to differential Manifolds, Mc Graw-Hill, New York
